50=2.1t+9.8t^2/2

Simple and best practice solution for 50=2.1t+9.8t^2/2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 50=2.1t+9.8t^2/2 equation:



50=2.1t+9.8t^2/2
We move all terms to the left:
50-(2.1t+9.8t^2/2)=0
We get rid of parentheses
-9.8t^2/2-2.1t+50=0
We multiply all the terms by the denominator
-9.8t^2-(2.1t)*2+50*2=0
We add all the numbers together, and all the variables
-9.8t^2-(+2.1t)*2+50*2=0
We add all the numbers together, and all the variables
-9.8t^2-(+2.1t)*2+100=0
We multiply parentheses
-9.8t^2-4t+100=0
a = -9.8; b = -4; c = +100;
Δ = b2-4ac
Δ = -42-4·(-9.8)·100
Δ = 3936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3936}=\sqrt{16*246}=\sqrt{16}*\sqrt{246}=4\sqrt{246}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{246}}{2*-9.8}=\frac{4-4\sqrt{246}}{-19.6} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{246}}{2*-9.8}=\frac{4+4\sqrt{246}}{-19.6} $

See similar equations:

| s-1=3.97 | | 11x+60=180 | | q+8=-13 | | 6x+17=132 | | 48=-7y-1 | | 3x=12-5x+6 | | 9.46=2k | | 6=m/118 | | n-2.8=1.3 | | t-13.76=4 | | 14=4+9y | | 3.83=c-10.17 | | 16(4-3x)=96(-1/2x+1) | | 12-h=-8 | | 6(2x-5)=-90 | | -6(x+3)-8=-26 | | 50=2.1t+9.8t^2 | | x+2/7-x+3/2=3/14 | | x²+x-110=0 | | 8x+2=9x+9-x-7 | | 2x+(3x+5x)=61 | | 32r=288 | | -|2x-4|=-11 | | 84=w(w+8) | | m+6.8=18.8 | | 2x+3x+5x=61 | | 2y=29-8y=5 | | 17=16-a/2 | | x+1.5=2.75 | | k-2=4.44 | | 3(3x+9)=-72 | | `13=1/2(3x+8) |

Equations solver categories